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1. Introduction  

Change detection is a central task in the field of remote sensing. Detection of anthropogenic or natural impacts 
on landcover is essential for many environmental studies. On the regional to global scale, only multitemporal remote 
sensing is capable of monitoring landcover changes caused by short-term phenomena such as fire hazards and 
seasonal vegetation change, or long-term phenomena such as urban development and desertification in a practical 
way. A variety of change detection techniques has been developed for multispectral satellite and airborne imagery, 
including arithmetic operations, methods of principle component analysis as well as post-classification comparison 
and multitemporal classification [Singh, 1989], [Roberts et al., 1998a], [Yuan et al., 1998]. Spectral change 
detection techniques rely on the principle that a difference exists in the spectral response of a pixel on two dates if 
the biophysical material within the instantaneous field of view (IFOV) has changed between these dates [Jensen, 
1996]. Hyperspectral change detection has many advantages over multispectral data in detecting and discriminating 
surface properties because it provides a continuous spectrum across a range in wavelengths [Green et al., 1998]. 
Nevertheless, only few attempts have been made for change detection based on hyperspectral images [Wiemker et 
al., 1997]. Until recently, the main limiting factor on the employment of hyperspectral sensors in change detection 
studies has been inadequate multitemporal coverage [Garcia and Ustin, 2001]. But with the launch of the 
hyperspectral sensor Hyperion [EO1, 2000] and the growing number of hyperspectral airborne sensors, more of 
these images may be available soon, and with them a greater need for hyperspectral change detection methods. Past 
investigations mainly focused on the use of hyperspectral change detection for vegetation. Garcia (2001) [Garcia 
and Ustin, 2001] and Roberts (1999) [Roberts et al., 1997] use spectral mixture analysis to identify changes between 
soil, green vegetation (GV) and non-photosynthetic vegetation (NPV). But this involves time-consuming pre-
processing and endmember selection to extract the amount and kind of changes depending on the selected classes. 
Other researchers used vegetation indices for change purposes [Chen et al., 1998], [Gamon and Qiu, 1999]. But all 
of these methods only considered specific changes. None of these methods accounts for general purpose monitoring, 
which is often needed to interpret the different changes in a global context. For example, changes in vegetation may 
often be due to anthropogenic influences. However, as multitemporal hyperspectral coverage increases even in those 
areas where no or little ground truth data is available the need for robust unsupervised change detection methods 
will be more evident than before.  

The purpose of this study is to detect seasonal vegetation dynamics in the Santa Monica Mountains using an 
unsupervised hyperspectral change detection approach. Seasonal vegetation dynamics in arid and semi-arid areas are 
largely regulated by the availability of water. But climatic shifts and anthropogenic influences may also have a 
major impact on seasonal fluctuations. Therefore it is important to understand how these properties interact to 
predict long-term environmental consequences of climate and land use changes on ecosystem function and 
sustainability [Ustin et al., 1998]. However, detecting vegetation dynamics in the absence of land cover change is 
more challenging then standard land cover analyses because of the subtle community response [Garcia and Ustin, 
2001]. Therefore we investigate the usefulness of a relatively new unsupervised change detection procedure for 
hyperspectral images. The so-called multivariate alteration detection (MAD) technique proposed by Nielsen and 
Conradsen (1998) [Nielsen et al., 1998]. In past studies this method has been successfully applied to multispectral 
images [Canty and Niemeyer, 2002], [Niemeyer et al., 1999], [Nielsen, 1996]. Here it was used to highlight seasonal 
changes in bitemporal Airborne Visible/ Infrared Imaging Spectrometer (AVIRIS) images from the Santa Monica 
Mountains (California). We applied the algorithm to selected bands as well as to all bands to test the usefulness of 
this method. The MAD bands were then examined to identify the quantity and the quality of changes. The results 
were compared with a derivative-based green vegetation index (DGVI) proposed by Chen and Elvidge (1998) [Chen 
et al., 1998] and a spectral mixture analysis (SMA) [Ustin et al., 1993] to provide a basis for comparison with other 
studies.  
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2. Methods  
2.1 Study Site  

The study site was located in the Santa Monica Mountains (California, USA). The range extends 70 km 
westward from the City of Los Angeles to Ventura, along the Pacific coast. Elevation ranges from sea level to about 
900 m. This region is characterized by a Mediterranean climate, having cool, wet winters and hot, dry summers. The 
mean annual precipitation is 600 mm per year mainly falling between December and April. Temperatures exceed 
35oC in the summer but seldom drop below 10oC in the winter. The rough, discontinuous, mountainous terrain is 
mostly dominated by chaparral vegetation communities, including drought-senescent ”soft” chaparral (coastal sage 
scrub) and evergreen ”hard” chaparral [Barbour and Major, 1990]. Hard chaparral (dominated by Ceanothus spp. 
and Adenostoma fasciculatum) is mainly distributed at higher elevations on the interior side of the range. Soft 
chaparral (dominated by Salvia and Eriogonum spp. and Artesemia californica) is more common in the coastal area 
at lower elevation but does also occur in isolated patches at higher elevation on outcrops of shallow or fine textured 
soils [Holland and Keil, 1967]. However, vegetation patterns are complicated by the complex spatial distribution of 
chaparral species due to steep topographic gradients, variable fire histories, a complex landownership and different 
soil types [Roberts et al., 1998b].  
 
2.2 AVIRIS Data  

AVIRIS collects spectra in the wavelength range from 390 to 2500 nm in 224 bands with a nominal spectral 
response of 10 nm [Green et al., 1998]. The sensor is mounted on an ER-2 aircraft, flying at an elevation of 
approximately 20 km resulting in an IFOV of 20 m on the ground. A typical AVIRIS scene consists of  614 * 512 
pixel (~ 11 km * 8 km).  

Bitemporal AVIRIS data sets were acquired over the Santa Monica Mountains on 23 October 1996 and on 7 
April 1997. The data presented here were obtained from flight-lines f970407t01p02, run 06, scene 04 and 
f961023t01p02 run 04, scene 05 and 06, centered over Point Dume, California (34 o5`N, 118 o40`W).  
The images from 1996 were acquired 3 days after the Calabasas fire at the end of the dry Mediterranean summer, 
whereas the 1997 image represents a period of spring growth.  
 
2.3 Preprocessing  

Atmospheric correction was done using the MODTRAN 3 radiative transfer code to process the AVIRIS 
radiance data to reflectance. To retrieve apparent surface reflectance a method proposed by Green et al. [Green et 
al., 1993], Roberts et al. [Roberts et al., 1997] was applied on the MODTRAN corrected images. This model 
accounts for a spatially variable atmosphere, such as found over mountainous terrain. The images from fall 1996 
were then mosaicked to cover the scene from spring 1997.  

A tedious task associated with change detection is the registration of the images involved, in particular the 
setting of ground control points (GCPs). Registration errors will tend to reduce the accuracy of any digital change 
detection effort. It is essential that registration accuracies should be on the order of half a pixel or less, to avoid false 
change signals as much as possible. A typical problem of hyperspectral imagery recorded with airborne line 
scanners is that normal registration techniques like polynominal fitting yield accuracies of some pixels at best. This 
displacement is caused by the varying flight tracks of the aircraft (in contrast to satellites) and the usually large 
swath angles of airborne scanners which allow for oblique viewing angles. Therefore, imagery from airborne 
scanners in general requires locally adaptive transformation functions [Wiemker et al., 1997]. For the image-to-
image registration, the scene from 1997 was used as base image and a thin plate spline model (TPS) was applied to 
compute the warping transformation [Geomatics, 1997]. This model computes, in addition to a global 
transformation, local interpolation functions between the GCPs. To ensure an accurate change detection registration, 
400 GCPs were manually digitized. 150 GCPs were selected as check points to compute the root mean square error 
(RMS) of the transformation. The overall accuracy of the registration was about 0.41 pixels.  

In order to preserve the spectral characteristics of the data as much as possible resampling was done using the 
nearest neighbor method. For further processing, 165 AVIRIS bands were selected and a sea mask was applied to 
the co-registered AVIRIS images.  
 
2.4 Multivariate Alteration Detection (MAD) 

The MAD procedure is an application of a classical statistical transformation referred to as canonical 
correlation and will briefly be described here. In general, hyperspectral imagery for monitoring purposes is recorded 



 

 

by multitemporal overflights over the same land area. We represent hyperspectral pixel intensities measured at two 
different times by random vectors X and Y :  
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N  being the number of spectral components, then we search for a linear transformation  
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where the coefficients a i and b i (i = 1... N ) are as yet unspecified. In order to detect the changes between the two 
images, we calculate the difference U – V. As an advantage of this procedure all the information is combined into a 
single image, and one is free to choose the coefficients a i and b i in a suitable way. The MAD procedure determines 
these coefficients so that the positive correlation between U and V is minimised [Nielsen, 1994].  
 
In fact, we search for a linear transformation such that the difference between the transformed vectors has maximum 
variance:  
 
 ( ) Maximumvar)var( →−=− YbXavu TT  (4) 
 
subject to the constraint  
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Under these constraints we have:  
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Therefore, we seek vectors a und b, which minimizes the positive correlation corr(u, v). Mathematically this 
involves the solution of a generalized eigenvalue problem [Anderson, 1984]. The MAD transformation is then 
described as:  
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where a i and b i are the defining coefficients from a standard canonical correlation analysis. X and Y are vectors with 
mean zero.  

As a result we obtain as many MAD bands as input channels, whereby the last MAD component has maximum 
spread in its pixel intensities and, ideally, maximum change information. The second-to-last component has 
maximum variance subject to the condition that the pixel intensities are statistically uncorrelated with those in the 
first component, etc. Figure 1 shows a scatterplot of MAD1 vs. MAD2 for two AVIRIS scenes. The components are 
seen to be uncorrelated and approximately Gaussian. Assuming that different kinds of changes will generally be 



 

 

uncorrelated with one another, these changes will be distributed among different MAD components. Noise will be 
concentrated in lower order components [Canty et al., 2001].  

 
Figure 1: Scatterplot MAD1 vs. MAD2. 

 
The MAD procedure is invariant to linear scaling. Therefore, it is insensitive to, for example, differences in gain 

and offset settings in a measuring device, and to the application of radiometric and atmospheric correction schemes 
that are linear in the digital numbers (DN) of each image band [Nielsen, 1999]. The MAD method can also be 
applied on any spatial and/or spectral subset of the full data set to focus the analysis in any desired manner. For 
specific applications, certain wavelength bands may be selected, whereby for general purpose monitoring, all 
spectral bands can be taken into account (see equation 2 and 3).  

The resulting MADs can qualitatively be interpreted by  

• visual interpretation  

• magnitude and direction of the changes  

• correlation with the original AVIRIS bands  

Furthermore the MAD method can be computed completely automatically because the calculation of the 
transformation is solely determined by the statistical properties (spectral dispersion matrices) of the original image 
data [Canty et al., 2001].  

For cases where many spectral bands are to be used, pre-processing via the MNF (minimum noise fraction) 
transformation and/or post-processing by means of a MAF (minimum/maximum autocorrelation factor) 
transformation could be useful [Nielsen et al., 1998].  
 
3. Results and Discussion  

In unsupervised change detection studies, where little or no ground truth data are available, it is very useful to 
get a rough estimation of the expected changes. Besides visual interpretation this can be done by using some 
fundamental image statistics. Therefore the mean and the standard deviations of both images were computed for 
every band and compared with one another to provide insight into the type of process that may have produced the 
changes (Figure 2).  

In Figure 2(b) the AVIRIS scene of October shows higher spectral variations in the NIR/SWIR. In addition, the 
mean signature of the AVIRIS scene of April (Figure 2(a)) shows a more pronounced red edge, chlorophyll and 
water absorption as well as lower mean values in the NIR and SWIR compared with the scene from October. On the 
basis of visual examination and due to the fact that both scenes are mainly covered with vegetation the signatures in 
the figure could be interpreted as a subsequent drying of the vegetation from April to October with an increasing 
amount of NPV and Soil at the expense of GV.  
 



 

 

               
 (a) mean  (b) standard deviations  
 
Figure 2: Mean (a) and standard deviations (b) from April 1997 (thick line) and October 1996 (dotted line) 
calculated over all AVIRIS bands. 
 

The MAD method was applied to the co-registered images using:  

(i) vegetation specific bands  

(ii)  MNF bands  

(i) Wavelength regions from 673-702 nm (chlorophyll absorption), 770-818 nm (rededge shoulder), 1173-
1211 nm (plant water absorption), 2088-2138 nm (ligno-cellulose absorption) and 2288-2338 nm (ligno- cellulose 
absorption) were selected as input channels for the MAD method in order to enhance these phenological changes as 
much as possible. The AVIRIS scene from April was selected as the base image in the MAD transformation. In 
order to detect the subtle vegetation dynamics we applied manual thresholding with 1.5 Standard deviations from the 
mean for the discrimination of change and no-change pixels. The MAD components are linearly stretched from 
mean minus and plus three standard deviations. The results of the MAD transformation (first 6 components) are 
shown in Figure 3. Maximum change areas are shown as white (positive changes) and black (negative changes) 
pixels. Gray areas indicate no change. Correlations between the change areas of the MADs and the original AVIRIS 
data (wavelength regions) are shown in Table 1. 
 

Table 1: Correlation matrix of the MAD components with the original AVIRIS bands. 

Date and wavelength region MAD 1 MAD 2 MAD 3 MAD 4 MAD 5 MAD 6 
       
April 7th (673-702 nm) 0.19 0.10 0.02 0.06 -0.08 0.00 
April 7th  (770-818 nm) 0.25 0.19 -0.07 0.09 -0.06 0.03 
April 7th  (1173-1211 nm) 0.15 -0.16 0.02 0.05 -0.09 -0.05 
April 7th  (2088-2138 nm) 0.16 -0.02 0.16 0.18 -0.00 -0.05 
April 7th  (2288-2338 nm) 0.11 -0.02 0.16 -0.19 0.02 -0.12 
       
October 23rd  (673-702 nm) -0.11 0.10 -0.09 0.06 0.03 -0.04 
October 23rd  (770-818 nm) -0.15 -0.21 -0.02 -0.08 0.04 -0.09 
October 23rd  (1173-1211 nm) -0.25 0.19 -0.08 0.05 0.03 -0.07 
October 23rd  (2088-2138 nm) -0.22 0.08 -0.28 0.16 0.08 0.01 
October 23rd  (2288-2338 nm) -0.24 0.08 -0.22 0.28 0.09 -0.05 
 



 

 

   
 (a) MAD 1 (b) MAD 2  (c) MAD 3 

   
 (d) MAD 4  (e) MAD 5 (f) MAD 6 

Figure 3: MAD components 1 to 6 (a-f). 
 

As mentioned above, MAD1 shows the largest changes. The correlation of MAD1 shows a weighted mean of 
all channels with positive correlation in the October image and negative correlation in the April image. Therefore 
MAD1 is probably an indicator of shadow-induced changes. Actually, if we consider MAD1 (Figure 3(a)) * we can 
identify positive and negative changes mainly located in east-west valleys, which are strongly effected by intense 
shadowing. Positive changes at the Calabasas fire site (at the lower middle site of the image) are due to post-fire 
vegetation re-growth from October to April. In MAD2 we expect smaller changes that are furthermore uncorrelated 
to MAD1. Therefore more subtle changes, such as changes in phenology, are expected to occur in MAD2 and lower 
order MAD components. In fact MAD2 correlates with bands in the NIR and Red and could therefore be sensitive to 
changes in GV. Figure 3(b) shows high positive changes at the coastal region and in some isolated patches in the 
interior. These changes are consistent with the distribution of the soft chaparral communities. Soft chaparral is 
drought-deciduous and exhibits pronounced seasonal changes. Because seasonal vegetation dynamics in 
Mediterranean-climate ecosystems are mainly driven by the effect of water, most of the changes in the chaparral 
communities were basically due to loosing green leaves. Negative changes represent seasonal dynamics in hard 
chaparral communities. Most hard chaparral species are evergreen and undergo little seasonal senecense.  

MAD3 and MAD4 have highest correlation in the SWIR regions and are presumably change indicators of NPV 
and/or soil. In general the change-enhanced data of MAD3 (Figure 3(c)) and MAD4 (Figure 3(d)) show small areas 
of changes in the soft chaparral areas. However, because of the larger changes at the Calabasas fire site, MAD4 
seems to be more likely to represent changes in soil. Linear changes in MAD3 and MAD4 are probably due to poor 
registration of roads. MAD5 (Figure 3(e)) and MAD6 (Figure 3(f)) are uncorrelated with all bands in both years and 
show scanner noise.  

Changes in the urbanized area apparent in all MAD components are probably due to registration errors, 
irrigation or seasonal planting of different flowers or plants. The golf course at the upper right shows high changes 
in some MAD components induced by irrigation and soil moisture. The changes at the coastline are caused by waves 
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and tides. Different changes at the Calabasas fire site best seen in (Figure 4(a)) are presumably due to the successive 
stages of post-fire vegetation re-growth.  

In comparison to the SMA (not shown) we see a general agreement between the MAD components and the 
fraction images (GV, NPV, soil and shadow) of the SMA.  

(ii) In order to concentrate and to visualize all spectral change information in one composite image the MAD 
transformation was performed based on a MNF transformation [Green et al., 1988] calculated from 165 AVIRIS 
bands. We used the first 10 MNF Bands describing 90% of the variance of the image data. Figure 4(a) shows the 
RGB image of MAD/MNF components two, three and four with the same decision threshold (MAD/MNF1 as an 
indicator of shadow induced changes was rejected).  

To provide a basis for comparison with other methods a DGVI difference image (Figure 4(b)) with the same 
decision threshold as applied on the MAD transformation was computed [Chen et al., 1998]. In the MAD/MNF 
composite we can see more changes than in the DGVI difference image, especially in the housing estate areas, the 
Calabasas fire site and at the golf course.  

In addition, a change probability based on a MAD transformation calculated from all 165 AVIRIS bands was 
performed. It was calculated using the sum of standardized, squared MADs [Canty et al., 2003] (see equation 8):  
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The resulting image (Figure 5) is approximately chi-square distributed with six degrees of freedom describing a 

change probability of  95%.  
 

  
a) MAD/MNF RGB composite image with  
R=MAD/MNF2, G=MAD/MNF3, B=MAD/MNF4 

(b) DGVI change mask 

Figure 4: Comparison between MAD/MNF and DGVI. 
 



 

 

 
Figure 5: MAD change probability. White areas represent changes with a probability of 95%. 

 
4. Conclusion  

The applicability of the MAD method to hyperspectral, bitemporal, unsupervised change detection studies was 
demonstrated and an interpretation approach based on the correlation matrix was given. The MAD transformation 
was applied on bitemporal AVIRIS images of the Santa Monica Mountains to detect seasonal changes. The method 
was performed on selected bands, MNF bands as well as to all bands. The main changes observed are due to 
contrasting seasonal patterns of chaparral communities. Large change areas are located within soft chaparral 
communities and at the Calabasas fire site. The lowest changes occurred in areas covered with hard chaparral. In 
addition changes that can be related to registration errors, irrigation practices, shadow formation and other 
anthropogenic influences were also shown by the MAD method. As expected subtle vegetation changes occurred in 
the lower order MAD components whereas large changes like shadow formation are more apparent in the first MAD 
components.  

We found the MAD transformation to be a good unsupervised change detection method for hyperspectral 
images. It can be applied on any spatial and/or spectral subset of the full data set and sorts different changes into 
different images. The MAD transformation is also comparable to other methods based upon DGVI or SMA. MAD 
tends to be robust against varying recording conditions at the time of the data acquisition and can be run completely 
automatically. But as for all change detection techniques a good registration accuracy is needed. On the other hand, 
interpretation of the MAD components is difficult when many spectral bands are used, so data reduction is 
sometimes necessary as a pre- and/or post-processing step. In general, the MAD transformation seems to be suitable 
for all kinds of change detection applications.  
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